1. Introducción a la computación

Marduk Bolaños Puchet


Viernes 10 de agosto de 2012

1

Parte I

Breve historia de las computadoras

El ábaco (chino) s. XIII A.D.

Los huesos de Napier (1617)

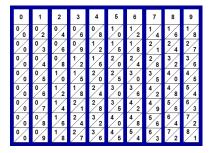


Figura : Cálculo de multiplicaciones, divisiones y raíces cuadradas

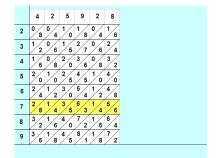
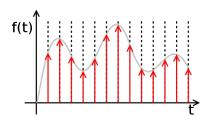


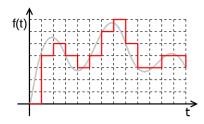
Figura: 425, 928 × 7

La Pascalina (1643)

Figura : Cálculo de sumas y restas

Calculadora de Leibnitz (1674)




Figura: Cálculo de sumas, restas, multiplicaciones y divisiones

Leibnitz introdujo el sistema binario

Sistema binario (Hay 10 tipos de personas...)

- Representa números utilizando sólo 0 y 1.
- Se implementa fácilmente con electrónica digital usando compuertas lógicas.
- Una señal digital es una aproximación (precisión finita) de una señal analógica.

- ► Ejemplo: 10b = 2d, 1000110b = 70d
- Conversión de binario a decimal: $1000110b = 1 \cdot 2^6 + 0 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$

Lógica booleana

Desarrollada por el matemático inglés George Boole en 1840.

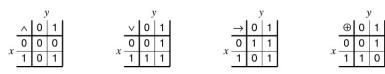


Figure 1. Truth tables

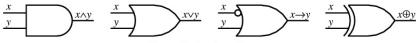


Figure 2. Logic gates

Telar de Jacquard (1805)

Figura : El telar era controlado usando tarjetas perforadas.

Máquina diferencial de Babbage (1822)

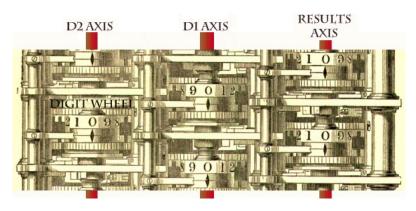


Figura : Permite tabular polinomios y con ello calcular logaritmos y funciones trigonométricas

Método de diferencias finitas

Una diferencia progresiva o adelantada de primer orden se define como

$$\Delta_h[f](x) = f(x+h) - f(x)$$

La diferencia de segundo orden se define como

$$\Delta_h^2[f](x) = \Delta_h[f](x+h) - \Delta_h[f](x)$$

Consideramos el caso h = 1 y $f(x) = a_2x^2 + a_1x + a_0$

Х	f(x)	$\Delta[f](x)$	$\Delta^2[f](x)$
0	a ₀	$a_2 + a_1$	2 <i>a</i> ₂
1	$a_2 + a_1 + a_0$	$3a_2 + a_1$	2 <i>a</i> ₂
2	$4a_2 + 2a_1 + a_0$	$5a_2 + a_1$	
3	$9a_2 + 3a_1 + a_0$		

- ► Cada valor en la tercera (cuarta) columna se obtiene restando a sus dos vecinos a la izquierda.
- ► Cada valor en la segunda (tercera) columna es la suma de dos valores ya calculados.

Máquina diferencial de Babbage

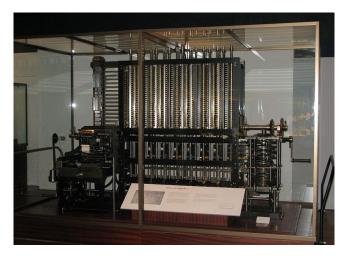


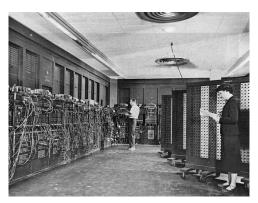
Figura: Modelo construido por el Museo de las Ciencias de Londres 1989-1991

Máquina analítica de Babbage (1834-1836)

- La primera computadora de propósito general
- Nunca se construyó, pero sentó las bases de las computadoras modernas
- Ada Lovelace, la primera programadora de la historia, codificó instrucciones en tarjetas perforadas.

Máquina del censo de Hollerith (1889)

- ► Hollerith inventó una manera de almacenar datos, que luego fueran leídos por una máquina, utilizando tarjetas perforadas.
- ► En 1896 fundó la Computing Tabulating Recording Corporation, que luego se convirtió en IBM.
- ► Con la máquina de Hollerith se computó el censo de 1890 en EEUU en tres meses. A mano, el cómputo habría demorado dos años.



Primeras computadoras electrónicas

- Z3 Construida por Konrad Zuse en 1941 en Alemania. La primera computadora digital de propósito general. Permitía hacer operaciones con números no enteros. Zuse también inventó el primer lenguaje de programación *Plankalkül*.
- Colossus Utilizada en la Segunda Guerra Mundial por los británicos para decifrar telegramas de los alemanes. Fue la primera computadora programable totalmente electrónica.
- ► Harvard Mark I Diseñada por Howard Aiken y construida por IBM en 1944. Consistía de más de 750,000 componentes. Medía más de 15 m de largo y 2.4 m de alto. Tenía un peso de 5 toneladas.

Electronic Numerical Integrator and Computer (ENIAC) - 1945

- ► La primera computadora electrónica de propósito general. Podía calcular sumas o restas 5000 veces por segundo.
- Ocupaba un cuarto entero, pesaba 30 toneladas, consumía 150-200 kW.

Primera generación: Tubos de vacío

▶ La UNIVAC I fue introducida en 1951. Utilizaba almacenamiento magnético. Se vendía en \$8.38 MDD. Fue la primera computadora producida en masa.

Segunda generación: Transistores y diodos

IBM 1401

- ► La invención del transistor en 1947 redujo dramáticamente el tamaño, el consumo energético y el costo de las computadoras.
- En 1956 IBM introdujo el primer disco magnético. Podía almacenar 5 MB a un costo de \$80 mil dólares.
- ► La PDP-1 tenía 9 KB de memoria y podía realizar 100,000 operaciones por segundo (flops). En ella se jugó el primer videojuego para computadora, Spacewar!

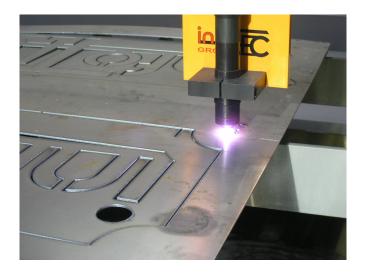
Tercera generación: Circuitos integrados

- ► La invención del circuito integrado en 1965 contribuyó a un mayor uso de las computadoras.
- La Illiac IV usaba 250,000 circuitos integrados y fue la computadora más rápida del mundo en los años 60.
- En 1969, se vendieron más de 50,000 Novas en \$8,000 dólares.
 El procesador estaba contenido en un circuito impreso de 38 cm.

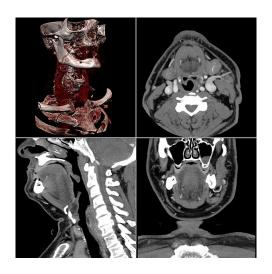
Cuarta generación: Microprocesadores

- ► En 1971, Intel introdujo el primer microprocesador (4004), que podía realizar 60,000 operaciones por segundo.
- ► En 2010 Intel introdujo un procesador que puede realizar hasta 107.55 mil millones de operaciones (DP) por segundo.

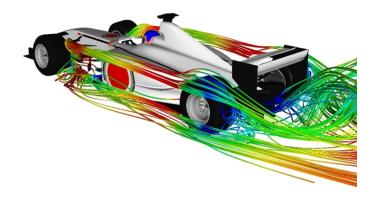
IBM Altair 8800 (1975)

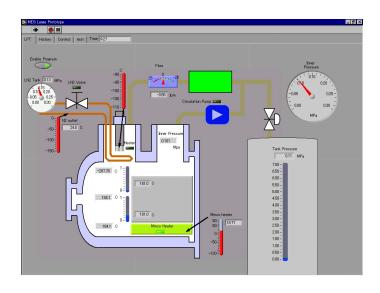

Apple Macintosh (1984)

Apple iMac (2009)


Parte II

Ejemplos de uso de las computadoras


Control Numérico (ingeniería y diseño industrial)


Tomografía computarizada (medicina)

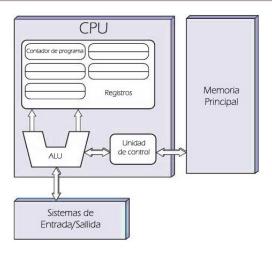
Cálculos y simulaciones (ciencias e ingenierías)

Automatización de experimentos (LabView)

Estudio del caos y fractales (física y matemáticas)

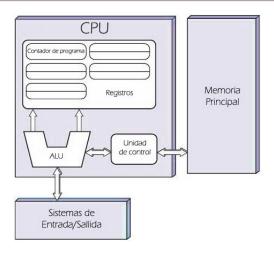
Arte digital

Otros ejemplos


- Experimentos en probabilidad (Métodos de Monte Carlo)
- Cálculo de π y primos de Mersene
- Síntesis de voz
- Reconocimiento digital de imágenes
- Malabares

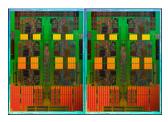
(Cargando juggler.mp4)

Parte III

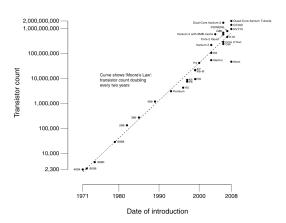

Descripción de los elementos del hardware

Arquitectura de Von Neumann (1945)

Modelo de una computadora, que utiliza un CPU y almacena instrucciones y datos en la memoria.


Arquitectura de Von Neumann (1945)

Partes de la computadora: ALU, UC, Memoria, Dispositivos I/O y Distribuidores de datos (*buses*)


Unidad Central de Procesamiento (CPU)

- ALU: Realiza operaciones aritméticas con enteros y operaciones lógicas con bits
- Unidad de control: Administra la ejecución de instrucciones por la ALU y la transferencia de datos con la memoria
- Características
 - Multitarea: El procesador interrumpe una tarea para realizar otra y luego termina la anterior.
 - Multiproceso: Cada núcleo realiza una instrucción. Ejemplos: Dual-, Quad-, Hexa- Core.
- ► Ejemplos: Intel, AMD, IBM (consolas de videojuegos)

Ley de Moore

CPU Transistor Counts 1971-2008 & Moore's Law

► La complejidad (número de transistores) de los circuitos integrados se duplica cada veinticuatro meses.

Memoria

- La memoria es una lista de celdas, que almacenan números. Cada celda tiene una dirección y almacena un solo número en su representación binaria.
- ► El CPU contiene celdas especiales llamadas **registros**, que se pueden leer y escribir más rápido que la memoria principal.
- La memoria principal se divide en RAM y ROM.
 - ► La RAM se puede leer y escribir cuando el CPU lo ordene. Su contenido se borra cuando se apaga la computadora.
 - ▶ La ROM contiene datos y software que sólo pueden ser leídos. El contenido se guarda indefinidamente. Además contiene un programa llamado BIOS, que administra el arranque de la computadora.
 - ► El software almacenado en la ROM se llama **firmware**. Los dispositivos portátiles almacenan su software en la ROM.

Periféricos

- Dispositivos de entrada
 - Teclado
 - Ratón
 - Micrófono
 - Escáner
 - Cámara de video
- Dispositivos de salida
 - Monitor (CRT y LCD)
 - Impresora (matriz de puntos, inyección de tinta, burbujas, láser)
 - Bocinas
- Dispositivos de entrada y salida
 - Tarjeta de red
 - Modem
 - Tarjeta de red inalámbrica
 - Bluetooth
 - DVD-RW
 - ► Tarjeta de video

Puertos y conexiones

- Externos
 - USB
 - FireWire
 - ▶ e-SATA
 - SCSI
 - Ethernet
 - VGA
 - DVI
 - Instrumentos científicos y equipos viejos
 - Paralelo
 - Serial
 - GPIB
- Internos
 - PCI Express
 - SATA
 - ATA/IDE

Parte IV

Clasificación del software

Distintas clasificaciones

- ► El software es una colección de programas y datos que proporcionan las instrucciones para que una computadora realice tareas.
- ► Se clasifica por tarea en:
 - Sistemas operativos
 - Kernel: Programa que media la interacción entre el hardware y el sistema operativo
 - Controladores de dispositivos (drivers)
 - Servidores (de red, de impresión, de correo, etc)
 - Sistemas de ventanas (soporte básico para una interfaz gráfica, ratón y teclado)
 - Software de programación
 - Compiladores
 - Depuradores
 - Intérpretes
 - Vinculadores
 - Editores de texto

- Software de aplicación
 - Automatización
 - Finanzas
 - Videojuegos
 - Telecomunicaciones
 - Bases de datos
 - Multimedia
- Se clasifica por licencia de uso en:
 - Comercial
 - Shareware
 - Freeware
 - Donationware
 - Open Source (código abierto)
 - Software libre (el código es abierto y de distribución gratuita)

Parte V

Sistemas Operativos

UNIX - Laboratorios Bell (1969)

- Unix fue diseñado para ser portátil, multi-tarea y multi-usuario.
- Filosofía de Unix
 - Los datos se almacenan en texto plano
 - ► El sistema de archivos es jerárquico
 - Los dispositivos son manejados como archivos
 - Existen muchos programas pequeños que se especializan en una tarea e interaccionan a través de una línea de comandos mediante tuberías
- Variantes
 - System V: HP-UX (Hewlett-Packard), AIX (IBM), Irix (Sillicon Graphics), Solaris (SUN Microsystems)
 - BSD (Berkley System Distribution)
 - ► GNU/Linux

BSD - Universidad de Berkeley (1977)

MacOS

- Sistema operativo con interfaz gráfica desarrollado por Apple Inc. desde 1984 hasta la fecha.
- ▶ La familia MacOS Classic (1984-2001) se basaba en código desarrollado por Apple y carecía de una línea de comandos.
- ▶ La familia MacOS X (2001-presente) se desarrolló a partir de NeXTSTEP, un sistema operativo de la familia Unix que utiliza el kernel Mach y utilerías de BSD.
- ► Es el segundo sistema operativo más popular después de Windows.

Windows

- ▶ Sistema operativo producido por Microsoft desde 1985 hasta la fecha.
- Se originó en 1985 como una interfaz gráfica que acompañaba a MS-DOS, imitando a la de MacOS.
- ► Es el sistema operativo más utilizado en computadoras personales > 90 %.
- ► También se utiliza en servidores de páginas de internet y bases de datos, aunque la competencia con linux y BSD es importante.

GNU/Linux

- ► El kernel lo desarrolló Linus Torvalds en 1991. Las utilerías y bibliotecas del sistema fueron desarrollados por el proyecto GNU (Gnu is Not Unix).
- Software libre
- ► Se puede instalar en casi cualquier dispositivo electrónico (desde un iPod hasta una supercomputadora)